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ABSTRACT

This report is intended to expand the applicability of positive kernel theory

to probabilistic settings and stochastic integrals. The main result states that

if a(t) is a positive kernel, and {8(t) : t > O} a Brownian motion, then

(*) ~(t) a(t-T)~~(T)d8(T)d8(t) + 4 a(O) T 

R (t) ~
2dt > 0 , a .s .

for every stochastic process {~~(t) : t > 0) which has a stochastic differential

dE (t) with respect to 8 ( t) , and for every T > 0. The implication of (*) con-

cerning energy estimates for certain Ito—Volterra equations is discussed, and

examples are provided.

5~Its Isetisi
Slfl kctIN 0

• ~.f.~~etD 0 

~~;.~ rie~ansAmuu ss.a
J~~ AVAIL NI/I PIuI~

AMS (MOS) Subject Classifications:— 601120, 45D05

Key Words - Fourier Inversion Formula, Gronwall Inequality, Ito—Volterra equation ,
Martingale, Positive Kernel, Stochastic differential equation

Work Unit Number 4 — Probability, Statistics, and Combinatorics

A Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the
National Science Foundation under Grant No. MCS75-17385 Aol.



SIGNIFICANCE AND EX PLANATI ON

A concept useful in establishing the stability of a solution to

certain linear and non—linear integral equations is that of a positive

kernel .  This is a function a (t )  such that

T t
(*) f x(t) f a(t—T)x(T)dTdt > 0

0 0

for every continuous function x(t) and every T > 0. For example , if

A > 0 then e
At 

is a positive kernel. We show that this concept

generalizes to a probabilistic setting, where stochastic integrals are

used. But the analogous estimate (*) no longer holds. There is a sig-

nificant correction term that must be added to the left side of (*).

We provide this term, and consider its implication concerning energy

estimates for certain stochastic integral equations. The one—dimensional

linear homogeneous stochastic differential equation serves as an illus-

trative example.

The responsibility for the wording and views expressed in this descriptive
stumnary lies with MRC, and not with the author of this report.



POSITIVE KERNELS AND STOCHASTIC INTEGRALS

Marc A. Berger

INTRODUCTION

In the theory of Volterra equations of the form

t
(V) x(t) + f a(t—t)g(x(t))dT f(t); t > 0

0

a concept useful for studying stability is that of a positive kernel a(t). This is

one for which

T tf x(t) J a(t—i)x(i)drdt > 0
0 0

for every x(t) ~ Cf0,~’), and for every T > 0. A discussion of such kernels, and

their implications concerning the stability of (V), appear in a large number of places,

including MacCainy and Wong (4], and Nohel and Shea (5].

Let alt) be a positive kernel. Then if F(t) E C1t0 ,..)

T t
J x(t) f a(t—r)x(T)dF(T)dF(t) > 0
0 0

for every x(t) C C(O,°°), and for every T > 0. To extend the setting a bit, let

(0 ,F , P ) be a probability space. If {G(t) : t > 0) is an a.s. differentiable

process, then

T t
(*) f ~(t) f a(t—t)~~(t)dG(t)dG(t) > 0, a.s.

0 0

for every a.s. continuous stochastic process {~~(t) t > O}, and for every T > 0.

Suppose now that there is a Brownian motion {8(t) t > 01 on (0 ,F , P ) .  We

consider the stochastic integral

T t
I (T;~~) = f ~(t) f a(t—r )~~(r)d8(t)dB (t); T > 0
a 0 0

3 Sponsored by the United States ~.rmy under contract No. DAAG29-75-c-~0024 and the
Nations) Science Foundation under Grant No. NCS7S-17385 AOl.



where {~~(t) t > o} is a nonanticipating and a.s. continuous stochastic process.

If it was possible to interpret the stochastic integral as a classical Stieltjes

integral , then (*) would be valid with G(t) = B(t). But of course, this is not so.

In fact the estimate (~ ) no longer holds. For if alt) 5 1 then

= ~ LI
T 

t~~~~tfl 2 ~ f ~ i~~t~i 2~t, a.s.; T > 0

What is true, however, is that whenever alt) is a positive kernel

I
a
(T;

~~
) + 2

~ a(O) 
T 
k(t)!

2d t > O , a.s.

for every T > 0. This is the content of the theorem in 51. The precise technical

hypotheses on a(t) and ~(t) are also provided in §1. In 52 we present an

estimate concerning solutions of

t

~(t) + f a(t—r )g(~~(T))d8(r) = fIt) ; t > 0
0

when they exist.

—2—
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H
§1. Basic Estimate

Let ~~~~~~~~~~~~ ) be a probability space with a Brownian motion {8(t) : t > 0}.

Let S be the space of real—valued functions a(t) e C1(0,.°) such that

e ta(t) C L1 (O ,°’) for all A > 0. A function alt) C S is said to be of

positive type if

T t
(1.1) f x(t) f a(t—T)x(t)drdt > 0

0 0 
—

for every real-valued function x(t) C c [O ,~ ) ,  and for every T > 0. For a

discussion and characterization of functions of positive type, and some illustrative

examples, the reader is referred to MacCamy and Wong (4], and Nohel and Shea (SI.

Theorem:

Let alt) C S be of positive type. Then

(1.2) 1
T 

~(t) f a(t-t)~~(t)d8(t)d8(t) + a(O) 1
T 

I~ ( t )  2dt > 0, a.s.

for every real-valued stochastic process {~~(t) t > O} which has a stochastic

differential d~ (t) with respect to 8(t), and for every T > 0.

The proof of this theorem relies on the following three results.

Lemma 1 (Correction Formula):

Let {~~(c ,t) : 0 < t < t < T} be a real—valued t-nonanticipating stochastic

process which has a stochastic differential a~~ (r ,t) with respect to 8(t), and

satisfies

T t T
(1.3) f f I~~( r ,t)~

2dTdt < ~~~, a.s.; 5 I,(t,t)I dt < ~~~, a.s.
0 0  0

Then

‘F T  I t  I
(1.4) 5 5 •(t,t)dB(t)dB (r) = 5 5 $(t,t)d8(t)dB(t) + 5 +(t,t)dt, a.s.

0 1  0 0  0



Lemma 2:

Let II = {z C ~ : Re z > 0). If alt) € S is of positive type, then

£(z) > 0 for z C fl, where

(1.5) &(z) = Re 5 e
_Zt

a(t)dt
0

Lemma 3:

If alt) € L
1
(—..,=) is an even function, then for a.e. t € (— ~~,~~ )

(1.6) a(t) = ~lJ e
1tt

~ (ic)dt

Lemma 1 can be found in Berger (11, or Berger and Mizel (3 1 . The definitions

of t—nonanticipating, ~~$(t,t) and the two double integrals in (1.4) are also

provided there. Lemma 2 can be found in Nohel and Shea (5]. Lemma 3 can be

proved directly from the Fourier Inversion Form ula.

Proof of Theorem:

Following Nohel and Shea (5] extend a(t) evenly to (—°‘,“) ;  that is,

alt) = a (—t) , t < 0. And define aA
(t) C L1 (—”~,’~’), for A > 0, by

sA lt) 
= a

_A It I a(t )  t C 
~~~~~~~~~~ Let

(1.7) ç(t) = ‘F 
e~~

tt
~ (t)d8(T); t € (-~~~~~ )

By Lenuna 1, for 1 > 0

I t ‘F
(1.8) 5 ~(t) 5 a (t—t)~~(r)d3(r)d$(t) + 

I a(0) 5 ~
(t)l

2dt Q (I;~~), a.s.
0 

2 a

where

(1.9) 
~a

1’F’~~ 

1 1 

~(t) f a(t-t)~~(T)d8(T)dB(t); I > 0

Using the fact that (sea Berger and Mizel (31)

(1.10) u r n  sup (la A ( t)  — a(t)I + Ia~
(t) — a’(t)I] 0; ‘1’ > 0

A~O O<t<T

— 4 —
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and Lemma 3, it follows that

Q (T;~~) = lirn 
T 

~ ( t )  5 a
~~
(t-T)

~~
(t)dB (T)dB(t) , a.s.

a A~ O O  0

(1.11) 1km 5 ~(t) f tf  e~
5 (t_ t)

â(A + is)dsJ~~(t)d8(t)d8(t), a.s.

~~O 0  0 -~~

= urn 5 tys 
2
~ (A + is)ds, a.s.

A~0

Thus, by Lemma 2, Q (T;~~) > 0, a.s. for every I > 0. And the result is

apparent now from ( 1 . 8 ) .

We note that from the more general version of the Correction Formula which

appears in Berger and Mize i (31 , one obtains a generalization of (1.2) to

continuous martingales fy lt) : t > 0). Namely,

(1.12) 
T 

~(t) 5 a(t-t)~~(t)dy(t)dy(t) +4a(0) 
‘F 
k(t)1 2d (y,y ) ( t )  > 0 , a.s.

— 5—



§2. Ito-Volterra Equations

We consider next the Ito—Volterra equation

t t
(I—V) ~(t) + 5 o(t—r)g(~~(t))d8(r) + 5 b (t—t)~~(r)th = ~ (t); t > 0

0 0

In Berger 111 existence and uniqueness of a solution to (I—V) is established under

the hypotheses

(a
1
) sup Io ( t ) I = 1 0 1 1 1< ~~ , sup lb(t) I = l I b lI 1< ; I>  0

0<t<T 0<t<T

(a
2) g(x) is Lipschitz continuous on ]R , and there exists a constant K > 0

such that for all x C ]R

(2.1) g(x)1
2 

< K(1 + x 1 2 ) S

(a
3
) sup ~IP(t ) I 2 

~ ; 
1 > 0

0<t<T

Let b* (t) be the resolvent kernel for b(t). That is, b* (t) satisfies

t
(2.2) b* (t) + f b(t_T )b* ( t )dt = b(t); t > 0

0

Then (I—V) can be put in the form

t
( 2 .3 )  ~ (t) + 5 a ( t — t) g ( ~~( t ) ) d 8 ( t )  f ( t ) ; t > 0

0

where

t
alt) o(t) - 5 b* (t_T)a (r)dr; t > 0

0

t
(2.4) f(t) = ~ (t) — 5 b* (t_r)~~(T)dr; t > 0

0

For the linear case, g(x) = x , the solution ~(t) can be written in terms of

a resolvent kernel, as is done in Berger (11, and Berger and Mizel (21. The

result is

t
(2 .5 )  ~(t) — f(t) + 5 k (r , t ) f ( t ) d a ( r ) ,  a.s.; t > 0

0

—6— . S
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where

a(t) = 8(t) + a(0)t; t > 0

(2.6) k(t,t) = ~ (_l)
nkn

(T,t ) ;  0 < t < t
n= 1

t
k (r ,t )  = a (t—t ), k (T , t )  5 a ( t — s ) k  (s , r ) d B ( r ) ,  n = 1,2,...; 0 < t < t1 n+ 1 n — —

I

The d e f i n i t i o n  of the integral on the right of ( 2 . 5 )  can be found in Berger Ill ;

or Berger and Mizel (2) or [31 .

Corollary:

Let alt), given by (2.4), belong to S, and let ~(t) be a solution to

( I — V ) . If a ( t)  is of positive type , then

(2.7) 
‘F 
g(~~(t))(~~(t) - f(t)]dB(t) < a(0) 

‘F 
Ig (~~(t))I

2dt, a.s.

for every T > 0 , where f ( t )  is given by ( 2 . 4 ) .  Similar ly,  if — a ( t )  is of

positive type , then

(2.8) f g ( ~~( t ) [ ~~~t )- f ( t ) ] d 8 ( t )  >~~~ a (0) 5 g(~~(t))~
2
dt, a.s.

for every T > 0..

Proof: Both (2.7) and (2.8) follow directly from (2.3) and (1.2).

As an example , consider the stochastic differential equation

d~ (t) = —u~ (t)d8(t) — A~~~( t)d t ;  t > 0

(2.9) ~ (0) c

This equation can be written in the form (2.3) with

(2.10) alt) — ~~
_A t 

f(t) ce
_A t; 

~ > 0

If ~ 
> 0 and ~\ > 0 then a(t) is of positive type, and the corollary provides

the estimate

( 2 . 1 1 )  

T 

~~ ( t) I~~~ ( t )  — f(t)IdB (t) u f’ IZ(t)I2dt, a.s.

for every T > 0.

—7—



As another example, consider the pair of stochastic differential equations

d~ (t) = — j ~~(t)dB (t) — A~~( t )d t; t > 0

d~ (t) = —~~~(t)d~~(t) — A~ (t)dt + s~~tt)dt; t > 0

~ (0) = c, ~ (0) =

These equations can be combined and written in the form 12.3) where alt) and fIt)

are both solutions of the differential equation

(2.13) x” (t) + Ax ’ (t) + mAx(t) = 0; t > 0

with initial conditions

(2.14) a(0) = ~i, a’ (0) = —Aji; f(0) = c, V (0) = —A~

If i > 0, A > 0, A 2 < 4aA , ~~ = 2A~ then alt) is of positive type, and the

corollary provides the estimate (2.11) for every I > 0.

As a final example, consider the integro—differential equation (see Berger [1])

t t
(2.15) d~ (t) = (5 o(t—I)g(~~(t))d8(t)]d8(t) + t f  b (t—r)g(~~(r))dr]dt; t > 0

0 0

~(0) = c

If o(t) and b(t) are both of positive type, then it follows from (1.1) and (1.2)

that

I I t
(2.16) G(~~(T)) > G(c) — a(0) J g(~~(t))~

2dt + 5 g’(~(t) )~J o(t—r)~~(r)d8(I)I
2dt, a.s.

0 0 0

for every T > 0, where G(x) = 2 f ()d x € JR.

If g ’ (x) > 0, x C ]R , then the last tern, on the right is positive, and can be

dropped from the inequality. In fact, if g(x) = x the Gronwall Inequality can be

used to obtain the estimate

— 1a(0)T
(2.17) k(~ )l > fc~e 

2 
, a.s.

for every I > 0. The reader can check that for the case alt) a > 0, b (t) 0 the

solution of (2.15) is a.s.

- lOt

(2.18) ~(t) = cc 2 coshi/~B(t), t > 0.

—8—
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for every stochastic process {~~(t) : t 
> o} which has a stochastic

differential d~ (t) with respect to 8(t), and for every T > 0. The

implication of (*) concerning energy estimates for certain Ito—Volterra

equations is discussed, and exam ples are provided.
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